Is it safe to come out? Fish responses to changes in predator density

Overfishing can cause changes in fish populations over time by removing the big fish (often predators) from marine ecosystems. Reducing predator density can have consequences for ecosystem function, including movement of prey and reproduction of the predators themselves (Madin et al. 2012). Often marine parks are established to protect marine ecosystems by preventing these changes or allowing communities to recover from fishing.

Example of a food web and the responses of lower trophic levels to a reduction in the number of top-level predators  (Cury et al. 2001).

Example of a food web and the responses of lower trophic levels to a reduction in the number of top-level predators
(Cury et al. 2001).

Professor Robert Warner from the University of California, Santa Barbara and his team of researchers study fish behaviour. Professor Warner spoke last week at Macquarie University about fish behavioural responses to predators and what happens when predators are removed from ecosystems.

Removing predators can cause a trophic cascade, which is a change in the abundance of animals and plants in the lower levels of the food chain (Baum & Worm 2009). For example, the removal of sharks means predatory fish can increase in numbers which can lead to a decrease in smaller herbivorous fish population sizes and a boom in the amount of seaweed and/or algae on the reef.

As well as these direct changes to the food chain there are also indirect changes in the ecosystem, such as the behaviour of fish (Madin et al. 2010). Prey fish change their behaviour to avoid predators and reduce their risk of being eaten. This avoidance behaviour changes in response to their environment, so when there are more predators around the prey fish are more risk averse. The behaviour can change both temporally (over time) and spatially (over an area).

The extent to which prey fish will range from shelter (blue line) in fished (lower predator density) and unfished (higher predator density) areas. Photo: Belinda Fabian.

The extent to which prey fish will range from shelter (blue line) in fished (lower predator density) and unfished (higher predator density) areas. Photo: Belinda Fabian.

The researchers compared the distances prey fish ventured from shelter and the density of predators in both fished and unfished areas. The predators in fished areas are smaller and a lower density compared to the predators in unfished areas. In unfished areas they found the prey fish ranged over a shorter distance from shelter than in fished areas (Madin et al. 2012).

Another change in fish behaviour is their foraging patterns. When predators are present, fish can change the location of their foraging and/or the time when they forage. For example, a fish that normally feeds on the reef can avoid a predator by moving to the mangroves or feed at night to avoid a predator which is active during the day.

These changes in prey fish behaviour can have flow on effects for other parts of the reef. The restriction in the distance the fish are willing to range from shelter during feeding can have an impact on the distribution pattern of algae (food of the prey fish). When there is low predator density prey fish are willing to range far and wide which leads to even consumption of algae over the reef. In contrast when there are more predators the prey fish are more risk averse and only forage close to shelter (Madin et al. 2012). This means the algae is heavily cropped close to shelter and there is low cropping at further distances from shelter. This uneven distribution and overgrowth of algae can negatively impact other organisms on the reef such as coral (Coyer et al. 1993). The heavy cropping close to shelter means some of food the fish is consuming may be less than ideal and their growth and reproduction may be limited due to energy and/or nutrient deficiencies (Heithaus et al. 2008).

Algae growing over coral in Suva, Fiji. Photo: Belinda Fabian.

Algae growing over coral in Suva, Fiji.
Photo: Belinda Fabian.

Understanding the impacts of predator density in marine ecosystems is important for fisheries management and the establishment of marine sanctuaries. The sites used in these studies include currently fished, long established protected areas (no previous fishing) and new protected areas (recently fished). The researchers included these types of areas in the study as they wanted to determine the impacts of predator removal on prey behaviour and if these effects can be reversed through the cessation of fishing and a resulting increase in predator density (Madin et al. 2012).

Reef environments have a delicate balance of species, interactions and environmental variables. Professor Warner and his team have shown that a change such as overfishing of a predator species could have far-reaching impacts on the distribution and abundance of organisms on the reef. If the interactions are permanently changed then there could be negative impacts on the functioning of the reef, especially in the current context where there are many other challenges for reefs such as pollution and climate change.

To learn more:

Baum JK and Worm B (2009). Cascading top-down effects of changing oceanic predator abundances. Journal of Animal Ecology, 78, 699-714.

Coyer JA, Ambrose RF, Engle JM and Carroll JC (1993). Interactions between corals and algae on a temperate zone rocky reef: mediation by sea urchins. Journal of Experimental Marine Biology and Ecology, 167 (1): 21-37.

Cury P, Shannon L and Shin Y-J (2001). ‘The Functioning of Marine Ecosystems’, Reykjavik Conference on Responsible Fisheries in the Marine Ecosystem, Reykjavik, Iceland, 1-4 October.

Heithaus MR, Frid A, Wirsing AJ and Worm B (2008). Predicting ecological consequences of marine top predator declines. Trends in Ecology and Evolution, 23 (4), 202-210.

Madin EMP, Gaines SD and Warner RR (2010) Field evidence for pervasive indirect effects of fishing on prey foraging behaviour. Ecology, 91 (12), 3563-3571.

Madin EMP, Gaines SD, Madin JS, Link A-K, Lubchenco PJ, Selden RL and Warner RR (2012). Do Behavioral Foraging Responses of Prey to Predators Function Similarly in Restored and Pristine Foodwebs? PLoS ONE, doi: 10.1371/journal.pone.0032390.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s