Is it safe to come out? Fish responses to changes in predator density

Overfishing can cause changes in fish populations over time by removing the big fish (often predators) from marine ecosystems. Reducing predator density can have consequences for ecosystem function, including movement of prey and reproduction of the predators themselves (Madin et al. 2012). Often marine parks are established to protect marine ecosystems by preventing these changes or allowing communities to recover from fishing.

Example of a food web and the responses of lower trophic levels to a reduction in the number of top-level predators  (Cury et al. 2001).

Example of a food web and the responses of lower trophic levels to a reduction in the number of top-level predators
(Cury et al. 2001).

Professor Robert Warner from the University of California, Santa Barbara and his team of researchers study fish behaviour. Professor Warner spoke last week at Macquarie University about fish behavioural responses to predators and what happens when predators are removed from ecosystems.

Removing predators can cause a trophic cascade, which is a change in the abundance of animals and plants in the lower levels of the food chain (Baum & Worm 2009). For example, the removal of sharks means predatory fish can increase in numbers which can lead to a decrease in smaller herbivorous fish population sizes and a boom in the amount of seaweed and/or algae on the reef.

As well as these direct changes to the food chain there are also indirect changes in the ecosystem, such as the behaviour of fish (Madin et al. 2010). Prey fish change their behaviour to avoid predators and reduce their risk of being eaten. This avoidance behaviour changes in response to their environment, so when there are more predators around the prey fish are more risk averse. The behaviour can change both temporally (over time) and spatially (over an area).

The extent to which prey fish will range from shelter (blue line) in fished (lower predator density) and unfished (higher predator density) areas. Photo: Belinda Fabian.

The extent to which prey fish will range from shelter (blue line) in fished (lower predator density) and unfished (higher predator density) areas. Photo: Belinda Fabian.

The researchers compared the distances prey fish ventured from shelter and the density of predators in both fished and unfished areas. The predators in fished areas are smaller and a lower density compared to the predators in unfished areas. In unfished areas they found the prey fish ranged over a shorter distance from shelter than in fished areas (Madin et al. 2012).

Another change in fish behaviour is their foraging patterns. When predators are present, fish can change the location of their foraging and/or the time when they forage. For example, a fish that normally feeds on the reef can avoid a predator by moving to the mangroves or feed at night to avoid a predator which is active during the day.

These changes in prey fish behaviour can have flow on effects for other parts of the reef. The restriction in the distance the fish are willing to range from shelter during feeding can have an impact on the distribution pattern of algae (food of the prey fish). When there is low predator density prey fish are willing to range far and wide which leads to even consumption of algae over the reef. In contrast when there are more predators the prey fish are more risk averse and only forage close to shelter (Madin et al. 2012). This means the algae is heavily cropped close to shelter and there is low cropping at further distances from shelter. This uneven distribution and overgrowth of algae can negatively impact other organisms on the reef such as coral (Coyer et al. 1993). The heavy cropping close to shelter means some of food the fish is consuming may be less than ideal and their growth and reproduction may be limited due to energy and/or nutrient deficiencies (Heithaus et al. 2008).

Algae growing over coral in Suva, Fiji. Photo: Belinda Fabian.

Algae growing over coral in Suva, Fiji.
Photo: Belinda Fabian.

Understanding the impacts of predator density in marine ecosystems is important for fisheries management and the establishment of marine sanctuaries. The sites used in these studies include currently fished, long established protected areas (no previous fishing) and new protected areas (recently fished). The researchers included these types of areas in the study as they wanted to determine the impacts of predator removal on prey behaviour and if these effects can be reversed through the cessation of fishing and a resulting increase in predator density (Madin et al. 2012).

Reef environments have a delicate balance of species, interactions and environmental variables. Professor Warner and his team have shown that a change such as overfishing of a predator species could have far-reaching impacts on the distribution and abundance of organisms on the reef. If the interactions are permanently changed then there could be negative impacts on the functioning of the reef, especially in the current context where there are many other challenges for reefs such as pollution and climate change.

To learn more:

Baum JK and Worm B (2009). Cascading top-down effects of changing oceanic predator abundances. Journal of Animal Ecology, 78, 699-714.

Coyer JA, Ambrose RF, Engle JM and Carroll JC (1993). Interactions between corals and algae on a temperate zone rocky reef: mediation by sea urchins. Journal of Experimental Marine Biology and Ecology, 167 (1): 21-37.

Cury P, Shannon L and Shin Y-J (2001). ‘The Functioning of Marine Ecosystems’, Reykjavik Conference on Responsible Fisheries in the Marine Ecosystem, Reykjavik, Iceland, 1-4 October.

Heithaus MR, Frid A, Wirsing AJ and Worm B (2008). Predicting ecological consequences of marine top predator declines. Trends in Ecology and Evolution, 23 (4), 202-210.

Madin EMP, Gaines SD and Warner RR (2010) Field evidence for pervasive indirect effects of fishing on prey foraging behaviour. Ecology, 91 (12), 3563-3571.

Madin EMP, Gaines SD, Madin JS, Link A-K, Lubchenco PJ, Selden RL and Warner RR (2012). Do Behavioral Foraging Responses of Prey to Predators Function Similarly in Restored and Pristine Foodwebs? PLoS ONE, doi: 10.1371/journal.pone.0032390.

Playing well with others? Sociality in huntsman spiders

Why do some huntsman spiders live in groups while the majority are perfectly happy living a solitary life? Dr Linda Rayor from Cornell University in New York spoke at Macquarie University recently about her work with Australian social huntsman spiders (Delena cancerides) and her excitement about finding more social huntsman species in Australia last year. Dr Rayor is passionate about social spiders and her findings could shed light on the evolution of parental care in a broad range of animals.

Sociality in arachnids is very rare – less than 1% are social beyond a short time of maternal care just after hatching. This may be due to the challenges a spider species has to overcome to become social. Aggressiveness in spiders means the majority can’t tolerate any other spiders being around them and this can lead to cannibalism (Riechert & Lockley 1984). The existence of three social huntsman species in Australia is a ‘big deal’ according to Dr Rayor as they have overcome the inbuilt aggressiveness that seems to come naturally to so many spiders.

Sociality in spiders has evolved independently at least 18 times (Yip & Rayor 2013b), so there must be something in it. Social huntsman spiders are found in south-west and south-eastern Australia and live in groups of 20 to 200 individuals, with a dominant female and her offspring of all different ages. In contrast to social insects, such as bees and termites, living together doesn’t increase the reproductive output of social spiders so there must be a different driving force behind their sociality (Whitehouse & Lubin 2005).

Delena Cancerides collected at Mount Ainslie, ACT in March 2014 Source: Canberra Times / Photo: Jay Cronan

Delena cancerides collected at Mount Ainslie, ACT – March 2014
Source: Canberra Times
Photo: Jay Cronan

Research from Dr Rayor’s group suggests a lack of available habitat was the driving force for the evolution of sociality in these spiders. Their preferred habitat of tight spaces under peeling acacia bark is normally 80-100% occupied, so there’s not much room to spread out. The spiders are forced together due to a lack of available housing.

Social huntsman spiders aren’t attached to their family members; they only live together because there’s no other option. This is demonstrated when a colony has to move because their home is destroyed (usually the bark falling off the tree). The family doesn’t move as a group – the spiders go in search of new homes by themselves with no regard for their siblings and the small ones generally get eaten by predators.

These social spiders live (mostly) peacefully in family groups, but if there are big spiders trying to immigrate into their colony they will become aggressive and deny entry to the invaders (Beavis et al. 2007). This is consistent with the limited habitat concept as the spiders are protecting their home (a valuable resource). Young spiders don’t leave the family home until they are big enough to compete with others for the sparse housing options.

To test this idea the researchers looked at the relationship between the availability of suitable habitat and the occupants of the bark spaces. They found that as suitable habitat becomes rarer the number of spiders in each colony increases and there are more large spiders in the colonies (Yip 2012). In addition, the frequency of takeovers of bark spaces also increases when available habitat decreases.

Huntsman family

Delena cancerides siblings of varying ages sharing food / Photo: Linda Rayor

Instead of using a web to trap prey, huntsman spiders roam around at night and hunt their prey (hence the name ‘huntsman’). This food is brought back to the colony for consumption. Food is shared about 5% of the time – mainly between mothers and children and sometime older siblings even share with their younger brothers and sisters (Yip & Rayor 2013a). Even this small amount of sharing is very different to solitary spiders who share food less than 1% of the time.

Prey sharing means all the spiders in the group have some food often, so there is less variability in the amount of food they consume. This is very different to spiders living alone that can have erratic food availability. D. cancerides has a lower metabolic rate than solitary spiders which means they can survive on lower amounts of food (Zimmerman 2007). The researchers aren’t sure whether sociality arose because of the lower metabolic rate in these spiders or whether sociality allows them to share prey and they have developed a lower metabolic rate as a result – it’s a bit of a ‘which came first: the chicken or the egg?’ discussion in the research group at the moment.

It would be interesting to study the metabolic rate of some closely related social and solitary huntsman species to see if all social huntsman species have a low metabolic rate or just D. cancerides. This could possibly shed some light on the evolution of sociality in this group.

To learn more:

Click here to see Linda Rayor talking about social huntsman prey sharing dynamics and click here to learn about her field collection of spiders in Canberra this month.

Beavis AS, Rowell DM and Evans T (2007). Cannibalism and kin recognition in Delena cancerides (Araneae: Sparassidae), a social huntsman spider. Journal of Zoology, 271:2, 233-237.

Riechert SE and Lockley T (1984). Spiders as Biological Control Agents. Annual Review of Entomology, 29, 299-320.

Whitehouse MEA & Lubin Y (2005). The functions of societies and the evolution of group living: spider societies as a test case. Biological Reviews. 80, 347-361.

Yip E (2012). ‘Costs and benefits of group living in an unusual social spider, Delena cancerides’. PhD thesis, Cornell University, New York.

Yip EC & Rayor LS (2013a). The influence of siblings on body condition in a social spider: is prey sharing cooperation or competition? Animal Behaviour. 85, 1161-1168.

Yip EC & Rayor LS (2013b). Maternal care and subsocial behaviour in spiders. Biological Reviews, doi: 10.1111/brv: 12060

Zimmerman A (2007). ‘Assessing the Costs of Group Living: Comparing Metabolic Physiology and Growth in Social and Solitary Spiders’. PhD thesis, Cornell University, New York.